2009 was a very unusual year for me—it was my first year of fatherhood. With a different set of responsibilities and priorities, it made sense to embark on a different sort of restoration project.
At first I thought it was a Hettrick Pedal Wagon, but then I deduced that it is a Garton Delivery Cycle. The chief piece of evidence in its identification was the name “Delivery Cycle” under a sloppy coat of green paint on either side of its wood pickup bed.
The Garton Toy Company of Sheboygan, Wisconsin, started business in 1879. Garton is probably most famous for its pedal cars, but they made a wide variety of wagons, scooters, and tricycles, too. I have not been able to determine when the first Delivery Cycles were produced, but they were certainly in production by 1950. The historical photo is from TricycleFetish.com.
The tricycle came from a nice man in Indiana who had bought it in Kentucky. It arrived carefully packaged, but from its poor condition it probably wasn’t worth the shipping charges. The first photos I took of it were after the restoration was well along, when it was beginning to look more worthwhile.
The fender took less than an hour to hammer straight, partly because it’s made of very thin steel, probably 22 gauge. To help it maintain its shape and to repair the fender’s rusted ends, I made up two doublers of 18 gauge steel, formed them to exactly match the fender contours, and brazed them in place on the underside at the front and back ends. The doublers made the flimsy fender rigid, and they took care of the material that had been eaten away by rust. A lot of balloon-tire bicycle fenders could probably be saved by similar treatment.
The fork was another victim of its own flimsiness. On any front-wheel-drive tricycle, the fork sees a lot of twisting torque as the pedals are pushed and the driver counters this with force at the handlebars to keep the machine going straight. You would expect the fork would be made strong to resist this constant twisting, but it was not. I suspect the tricycle makers all knew that their products had to last only a year or two. Thus, the fork steerer tube is not actually a tube at all. It’s just heavy-gauge rolled sheet metal brazed to the top of the fork; there’s still an open seam running the length of it. The fork itself is also just sheet steel formed in a U-channel—not a tube—and bent to fit over the front wheel.
Fork repairs were limited to welding up a tear at the fork bridge (such as it is in a single piece of formed sheet metal) and then welding shut the seam along the length of the fork’s steerer tube. I contemplated strengthening the fork itself, either by boxing closed the U-channel shape with welded-in sheet steel or by brazing steel rod into the recess of the U-channel. In the end I decided I’d cross that bridge another day when it actually starts to fail again from use.
Repair work on the handlebars focused on eliminating corrosion pitting so that the bars could be re-plated. The material appeared very thick, so I carefully ground down the handlebars with a small, right-angle die grinder. Then I used a fine-tooth flat file to laboriously block out the grinder marks so that the handlebars were true again (round and straight). The remaining file marks were taken out by hand sanding with #180 and #320-grit sandpaper. Then it was off to the electroplater’s shop.
Originally the frame tube was attached to the head tube by a big weld inside the head tube, such that on the outside there was still a seam showing where the two tubes joined. This joint had failed and someone had crudely reattached the parts with an arc welder by cobbling on big gobs of weld around the exterior of the joint. I ground out the arc weld and built up a decent-looking fillet weld using a MIG welder.
I also welded stops on the cranks and rear axles to limit the inward travel of the pedals and wheels. The original stops were just pinched and raised nubbins on the axles, but these had worn away almost entirely.
Painting was relatively straightforward, but the wheels took a lot of careful sanding of catalyzed filler primer to smooth out the effects of the surface rust. The colors are not quite true to the original Garton red, which was a metallic finish (with the metallic flake so fine that it looked almost like a candy apple red). Although I could have tried to match the original paint, remnants of which remained on the fork steerer tube, I could only guess at what paint designs and decals might have been on the frame, because it had already been thoroughly sandblasted long before I got it. Was the fender red or white? Was the head tube white? Were there contrasting pin stripes? Thus, I decided to go my own way with the paint scheme and colors.
Once the steel parts were painted, I set about making a new copy of the original wood box. The dimensions of the copy are precise down to the curved tops of the walls and the rabbets where the ends are inset into the sides. Even the nails are driven in at the exact same location as they were on the original, and the nail head diameter is identical to the originals. The only real deviation from the original box is that I used ¼-inch plywood for the floor instead of two 6-inch by ¼-inch oak planks nailed in side by side (“side by each” if you’re in Sheboygan, Wisconsin).
I painted the box with two coats of Rust-Oleum gloss black, which gave excellent results because it dried slowly enough that all of the brush marks flowed out. The Delivery Cycle would have originally had a red box to match the rest of the tricycle, but as I said I deviated somewhat from the original paint scheme. Red with a black box is the same color scheme that was on my first motor vehicle: a $50 1950 Dodge pickup. The purchase of that Dodge truck led to meeting my wife (a close friend of the seller’s sister), which ultimately led to this project.
The front wheel bearings I was able to clean out and reuse. They were made by a bearing manufacturer in Milwaukie. The rear wheels rode on Oilite bronze bushings of which little remained. They were each 7/16-inch inside diameter and ½-inch outside diameter. That’s right, the wall thickness was only 1/32 of an inch. Problem is, no one these days makes bushings that thin, so I bought bushings that were 7/16” ID by 9/16” OD and turned them down to fit.
But while doing all these other tasks, I was also working out how to replace the wire-secured solid-rubber tires. It took a long time to divine the process and sources for the materials. Basically, the solid-rubber tire material is almost solid except for a small-diameter hole through the center just big enough to slide a 1/8-inch-diameter steel wire. The tire material is cut to length slightly oversize, and the wire is threaded through and pulled taught around the wheel while the ends of the rubber tire are held apart so that the wire can be brazed together. The installation technique deserves its own post, but I’ll spare you unless someone requests it.
I bought tire material from Holmes Wheel Shop, an Ohio-based builder of wheels for Amish-style buggies. A come-along was used to tension the wire, and a tool of my own construction held apart the ends of the tire material while I brazed the wire together. It took a few attempts to work out the process, but in the end the results were great. If you want to know the details, leave a comment to this web post.
The last bridge to cross was painting the “Delivery Cycle” lettering on the sides of the box. I was able to take a pencil rubbing of the screened lettering off the original box. The rubbing was in turn scanned in to a computer, and I used Adobe Illustrator to trace it and convert the design to a digital file that I could take to a sign shop. At Fast Signs, they used the digital file to cut out self-adhesive vinyl lettering that I could use as a stencil.
For painting the lettering, I again chose Rust-Oleum for its slow-drying properties. An earlier attempt with spray paint had ended in failure when the paint came off with the stencil because it had dried too quickly to bond with the substrate paint. A little bit of yellow model paint added to the gloss white gave me the right tone of off-white. I puddled the paint on the stencil and used a razor blade to level it to match the thickness of the stencil. After about 15 minutes it had tacked up enough to hold itself together and not run, but it was still wet enough that I could peel up the stencil without taking the paint too. Simple!
The license plate on the back came screwed to the original box on this tricycle. It had been painted over in green with the rest of box, so the plate must have been installed a long time ago—it might even be an original part. I scraped off the green paint to reveal black figures on a light yellow background. The colors are the same as those used on Wisconsin license plates in the early and middle 1940s, years that are consistent with the expected production date for this tricycle.
By a fair stretch, the Garton Delivery Cycle was the biggest project I took on in 2009. I hadn’t expected it to be such a challenge, but I like to learn new skills, and I’m happy with how it turned out. And, for once, I’m ahead of schedule. My son has at least another year and half of growing to do before he can reach the pedals.